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Abstract

We investigate tiie asymptotic behavior of a general class of on-line Principal

Component Analysis (PCA) learning algorithms, focussing our attention on the

analysis of two algorithms which have recently been proposed and are based

on strictly local learning rules. We rigorously establish that the behavior of

the algorithms is intimately related to an ordinary differential equation (ODE)

which is obtained by suitably averaging over the training patterns, and study the

equilibria of these ODEs and their local stability properties. Our results imply

in particular that local PCA algorithms should always incorporate hierarchical

rather than more competitive, symmetric decorrelation, for reasons of superior

performance of the algorithms.





1 Introduction

The ability to extract the main features inherent in complex, high-dimensional

input data streams is of fundamental importance to many information process-

ing systems. Such "dimensionality reduction" occurs e.g. as a preprocessing

stage for efficient pattern recognition and classification, helps eliminating dis-

turbing noise or information redundancy, and is necessary to allow for further

transmission of the relevant information the input signal contains if not enough

transmission channels are available.

Generally speaking, optimal feature extraction can be described as con-

structing a function F which compresses a (f-dimensional input vector x into

a p-dimensional output vector y = F{x), where p < d and usually p <^ d, such

that, relative to some performance criterion, y contains as much information

about X as possible. If the mean squared error of the best linear estimate of x

given y (the "linear reconstruction error") is used as a criterion, this leads to a

statistical method called Principal Component Analysis (PCA); see Bourlard &
Kamp (1988), Linsker (1988), Sanger (1989), Baldi k Hornik (1991). PCA
is one of the simplest and most general purpose feature extraction techniques

which extracts information by finding the directions in which the inputs exhibit

most significant variation. The PCA outputs are given as y = Ax, where .4 is

a. p X d matrix such that the rows of A span the same subspace of IR'^ as the

eigenvectors associated with the p largest eigenvalues of the input covariance

matrix, see e.g. Baldi &i Hornik (1991).

A variety of PCA learning algorithms have been proposed within the last

decade. If upon presentation of a new learning pattern i, we modify /I according

to

AA = y{yx' -yy'A), y = Ax, (1)

(in what follows, y is the learning rate and ' denotes transpose), we obtain an

algorithm introduced independently by Williams (1985) as the Symmetric Er-

ror Correction Algorithm (SEC), by Baldi (1988) as a symmetric simplification

of the Back Propagation algorithm for a linear d-p-d architecture in autoeisso-

ciative mode, and by Oja (1989) as the subspace algorithm. The Generalized

Hebbian Algorithm (GHA) introduced by Sanger (1989) updates .4 by

A^ = 7(yx' - lower(yy' )A), (2)

where the "lower" operator sets all entries above the main diagonal to zero.

Clearly, in both algorithms, the first additive term is just hebbian learning

performing gradient descent on an energy function which maximizes the sum
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of the output unit variances, whereas the second term tends to keep the weight

matrix .4 constrained suitably; for the symmetric algorithm, it keeps AA' close

to the p-dimensional identity matrix (Baldi & Hornik, 1991), and in Sanger's

algorithm, it performs Gram-Schmidt orthonormalization on the rows of .4,

thereby hierarchically decorrelating the outputs. Both algorithms are, although

only implicitly, already contained in Oja &; Karhunen (1985). For the one-unit

case (p = 1), they both reduce to the algorithm first introduced by Oja (1982)

as a small learning rate first order approximation to hebbian learning with

additional euclidean normalization of the weight vector; in the sequel, we shall

always refer to this algorithm as "Oja's one-unit algorithm".

Recently, Foldiak (1989) and Rubner k, Tavian (1990) have introduced two

new algorithms which are based on a combination of Oja's one-unit algorithm

applied to each of the rows of A (or, roughly equivalent to that, hebbian learn-

ing with rowwise euclidean normalization) and some lateral inhibition mecha-

nism designed for decorrelating the outputs. Hence, the network architectures

employed for these algorithms utilize an additional set of connection weights

accounting for decorrelation. Learning of A is strictly local in the sense that

the modification of the i-th row of .4 only depends on the input x and the i-ih

network output; for tlie remaining weights, anti-hebbian learning is used, which

again is a very simple, local rule. Due to the locality of these learning mecha-

nisms, it has been argued that these algorithms be "biologically more plausible"

than the subspace algorithm or GHA.

Our concern in the present paper is a rigorous analysis of the properties of

these local PCA feature extraction algorithms for the case where a large number

of training samples is available. Such an analysis is usually based on the claim

that, assuming that the weight changes are sufficiently small, the sequence of

weights generated by the learning algorithm can be approximated by the so-

lution paths of an ordinary differential equation (ODE) which is obtained by

"averaging over all patterns", and that the weights converge to the asymptoti-

cally stable equilibria of this ODE. We shall provide a precise result supporting

this claim for the case where the training patterns are independent centered

random variables with the same covariance matrix and the learning rates tend

to zero at a suitable rate. In particular, we describe the appropriate averag-

ing procedure for local algorithms based on a feedback architecture, such as

Foldiak's. In addition to that, we present a stability analysis of the equilibria of

the ODEs associated with the algorithms. In particular, we shall establish that

for symmetric lateral inhibition mechanisms between the outputs, as the archi-

tecture originally introduced in Foldiak (1989), the desired limit points are not



asymptotically stable equilibria of the associated ODE. Therefore, hierarchical

decorrelation, although clearly disallowing for "competition" and lacking sym-

metry, should be favored over symmetric decorrelation, for reasons of superior

performance.

This paper is organized as follows. Section 2 introduces a general class of

local PCA feature extraction algorithms which contains the ones introduced

in Foldiak (1989) and Rubner &; Tavian (1990). Section 3 describes a precise

method of associating an ODE to on-line learning algorithms. Results are given

in section 4. Section 5 contains some additional remarks. All proofs are deferred

to the appendix.

2 Local PCA Algorithms

One class of local PCA feature extraction algorithms, including the algorithm

introduced by Rubner &i Tavian (1990), can be described as follows, cf. Baldi L
Hornik (1991), Kuan &; Hornik (1990). Using an additional linear layer for

decorrelation, the network output is computed as

y = QAx,

where Q is a, p x p matrix which performs the decorrelation.

Upon presentation of a new learning pattern, A is updated using either

hebbian learning with rowwise normalization, or, basically equivalent thereto if

the learning rates are small, using Oja's one-unit algorithm applied to each of

the rows of A, which can compactly be written as

AA = j{yx' -dmgiyy')A). (3)

Here, the "diag" operator sets all off-diagonal entries to zero. In the sequel, we

shall also use the "subdiag" operator, which sets all entries on or above the main

diagonal to zero, and the "offdiag" operator, which sets all diagonal entries to

zero.

Using the decorrelation mechanism proposed by Barlow <k Foldiak (1989),

Q is written as Q = I + W where / is the identity matrix and [V is symmetric

with zero diagonal and updated using the simple, anti-hebbian learning rule (as

in the novelty filter of Kohonen (1984))

AM^ = -;iofrdiag(yy'). (4)

Alternatively, hierarchical (i.e. in some sense Gram-Schmidt type) decorrelation

can be employed, which is accomplished upon writing Q = I -\- W , where now



W is subdiagonal (i.e., all entries of W which are on or above the main diagonal

are zero), and updating W according to

AW = -^subdiag(yy'). (5)

The architecture introduced by Foldiak (1989) is depicted below; white cir-

cles indicate hebbian, black circles anti-hebbian connections.

The network architecture proposed by Foldiak

Here, the network outputs are the sum of weighted network inputs and the

weighted feedback received from the other output units, such that, upon pre-

sentation of an input i, the outputs are updated according to

Ax + Wy^y, (6)

where W is the p x p matrix of lateral connection strengths.

Initially, W = O and A is "random". Foldiak suggests updating A and W
according to rules (3) and (4), respectively, such that W is kept symmetric with

zero diagonal throughout the learning process, and claims (p. 402) that when

an input is presented to the network, the units settle to a stable state for which

y = Ax -f Wy,

or

y = {I - W)-^Ax.

However, this is not necessarily true (see also Baldi k, Hornik, 1991). Let us

write y{k) for the network output after k updating cycles using (6), with fixed

input X and initial output y(0). Clearly,

y{k) = Wy{k-\)^Ax

= W''y{0) + {I + W + ---+W''-^)Ax.



To ensure convergence of !/(^-) to (/— VV)~^Ax as A: —' oo, we thus need that all

eigenvalues of W are less than one in absolute value, which is not guaranteed

by the algorithm. Even if the algorithm is modified accordingly, it would still

require infinitely many cycles to converge to the stable state, which is of course

computationally infeeisible for real-time applications. (Of course, the linear

system (/ — W)y = Ax could be solved explicitly in finite time; but then the

architecture is no longer self-contained, and the particularly attractive feature

of performing only simple local computations is lost.)

Both problems can be overcome by using asymmetric (=hierarchical) decor-

relation, i.e. using learning rule (5) rather than (4), which together with the

initialization W = O keeps W strictly subdiagonal throughout the learning pro-

cess. In fact, in this case, A = is the only eigenvalue of W , and it is easily

seen that the {i,j)-th entry of W'' vanishes ii i < j + k such that in particular,

\V^ — O for aW k > p and

(/- ^y)-l ^ I+W + ---+WP -1

Hence, after p updating cycles, the stable state is reached, irrespective of the

initial network output y(0). Interestingly enough, it will be shown in section 4

that if asymmetric decorrelation is employed, then, during the learning period,

it is enough to perform at least 2 cycles before updating the weight matrices,

thereby making the algorithm "quicker".

All algorithms introduced thus far are of the following general form. Upon

presentation of a new learning pattern x, the network output y is updated

according to

PiW)y + Q{W)Ax^y, (7)

where P{W) and Q{W) are polynomials in the p x p matrix W which satisfy

P(0) = O and Q{0) = I , and then A and W are updated as

AA = j(yx' -^{yy')A), (8)

AW = /ir>(yy'), (9)

where 4> and Q are suitable linear (selection) operators on the space of all p x p

matrices; as initializations, we take W = O, y = 0, and A as "random". In

fact, taking Q = O and <I> as the identity mapping, we obtain the subspace

algorithm (1); the choice Q = O and $ = lower gives Sanger's GHA (2). If

both P and Q are nonzero, the network outputs receive feedback from previous

outputs.



All local algorithms use <5 = diag. For the algorithm of Rubner &: Tavian,

P = O, Q{IV) = I + W, ^ = diag and Q = -subdiag. Real-time implementa-

tions based on Foldiak's architecture, which perform only a finite number, say k,

of output updating cycles before updating the weight matrices, use P(W) = W^,

Q{W) ^ I + [V + + W''-\ ^ = diag, and Q = -subdiag or -ofTdiag.

Of course, the above class of algorithms could be enlarged by allowing for

more general functions P and Q; for example, using Foldiak's original idea to

let the outputs settle into the stable state before updating the network weights

corresponds to the choice P = O and Q(W) = (I — \V)~^ (formally, the feedback

is eliminated by stabilization). However, as already pointed out, this choice is

computationally infeasible if combined with (4), and contained in the polynomial

setting if W is kept subdiagonal using (5). Therefore, generality is not really

restricted by considering only the case where P and Q are matrix polynomials

in W.

3 The ODE Method

On-line network learning algorithms are of the general form

en = n(en-i-¥7nhi:n,en-i)). (10)

where 9 is the vector of network parameters to be learned and 6^ is its estimate

after n updating steps, ;„ is the training pattern and jn the learning rate used

at the n-th learning step, /?(•,) is a function characteristic of the algorithm,

and n a "projection" mapping which may be necessary to keep the parameter

updates constrained suitably.

The key tool in the analysis of the sequence {6^} is the so-called interpolated

process e°{-) = (^°(0,« > 0), defined by

go^t) = l:LZlg^_^ + LL^:izl0^^ t^_,<t<t,, (11)
In In

where

to = 0, tn = Jl + h 7r>;

i.e., 6°{) is obtained by piecewise constant interpolation of {9n} with interpo-

lation intervals {jn}- Observe in particular that d°{tn) = 9n-

Kuan &; Hornik (1990) investigate the properties of the interpolated process

for the case of small constant learning rates and give applications to Error

Back-Propagation in supervised learning and PCA feature extraction algorithms



based on feedforward architectures. In the present paper, we shall always assume

that 7n ^ at a suitable rate as n —< oo. In this case, it can be shown tlial

^°(-) eventually follows the solution paths of an ODE (Ljung, 1977; Kushner L
Clark, 1978; Ljung k. Soderstrom, 1983). More precisely, Kushner's method,

which we find most convenient to use for our purpose, 'proceeds as follows.

Let us write m for the number of components of 9, and introduce left shifts

0"(.) - (6»"(/),/ > 0) of the interpolated process (11) by means of $"{1) =

9°{tn + t)\ observe that ^"(0) = ^°(<„) = ^„. Clearly, all processes ^"(•) are

elements of C([0, oo), IR"^), the space of all iR'"-valued continuous functions on

[0,oo). Under suitable conditions, it can be shown that the set of processes

{^"(•)} is bounded and equicontinuous on [0,T] for all T < oo, such that by

the famous Arzela-Ascoli Theorem (see e.g. Dunford & Schwartz, 1966), it is a

relatively compact subset of C([0, oo), IR'") if this space is given the topology of

uniform convergence on bounded intervals. (I.e., for each infinite subsequence

{m;} we can find a subsequence {nj } C {n/} such that ^"' (•) converges uniformly

on bounded intervals.) If for the moment we assume that 11 is just the identity

mapping, then the limits of convergent subsequences satisfy the ODE 6 = h{0),

where the dot denotes the derivative with respect to t and h is obtained from

/i by a suitable averaging procedure. More precisely, suppose that, as is the

case for the feature extraction algorithms we are interested in, the learning

patterns Zn can be decomposed as z^ = (x„,y„), where the {xn} are, say, a

sequence of independent random variables, and the ?/„ are generated throughout

the algorithm according to

yn - g{Xn,yn-l,On-l) (12)

with some initial j/o, e.g. yo = 0. Hence, in general, y„ (implicitly) depends

on all previous parameter updates ^o, . . . , 9n-i and exogeneous network inputs

xi, . .
. . Xn- For fixed 9, define a sequence yn{d) by means of the recursion

yn{9) = g{xn,yn-i{0),e) (13)

with initial condition yo(^) = J/o- Then, provided that the limit exists and

suitable additional assumptions are satisfied, we may take

h(9) = lim Eh(xr,,y„(9),9). (14)
n— CO

Now let 0* be the set of all asymptotically stable equilibria of the ODE
9 = h{9) and V{Q') its domain of attraction. If one can show that {9n} enters

some compact subset of 'D(0*) infinitely often, then the above approach allows



to conclude that 9n converges to some 6' ^ Q' as n ^ cc. However, the

verification of this condition, leading to a global asymptotic analysis of the

solutions of a usually complicated, nonlinear system of differential equations,

unfortunately appears to be virtually impossible for many applications and in

particular, for most feature extraction algorithms we are concerned with, the

only exception that we are currently aware of being Oja's one-unit algorithm

which was fully analyzed in Oja h Karhunen (1985). In any case, the above

characterization of the asymptotic paths of the interpolated process implies

that for a "good" algorithm, the asymptotically stable equilibria, being at least

locally attractive limit points of the associated ODE, should be desired limit

points of the algorithm (i.e. points one actually wants the algorithm to converge

to). On the other hand, if none of the desired limit points is an eisymptotically

stable equilibrium of the ODE, then we expect the performance of the algorithm

to be rather poor. Therefore, an explicit characterization of 0* is of fundamental

importance in understanding the asymptotic properties of the algorithm, even

if one does not succeed in identifying D(0' ).

For applicability of Kushner's ODE method as outlined above, as well as

for reasonable behavior of the algorithm, it is necessary that the sequence {On}

of parameter updates remains bounded or constrained to a suitable compact

subset of IR."* . For example, we already know that if we use Foldiak's architec-

ture with symmetric decorreiation, then the eigenvalues of Wn should eventually

be less than one in absolute value. This goal can be accomplished by imple-

menting some projection device IT as in equation (10). Such a device could

e.g. truncate the entries of 9 if they become too large; for feature extraction

networks, this would enforce biologically very plausible limits to maximal in-

terconnection strengths. Or, 11 could project into a lower dimensional compact

subset of IR"^ , as is the case if the A part is trained using hebbian learning with

rowwise euclidean normalization. As a rule of thumb, the ODE then becomes

9 G DIl{h{9)), where DU is the set of all directional derivatives of 11; for more

details, see e.g. chapter 5.3 in Kushner & Clark (1978). In particular, if trunca-

tion is employed to constrain the updates to some hyperrectangle, then we still

have 9 — h{9) in the interior of the hyperrectangle.

4 Results

Now let us apply Kushner's ODE method to the general class of PCA feature ex-

traction algorithms introduced in section 2. In this case, 9 — [vec(/l)', \ec{W)'\'

,

where the "vec" operator stacks one column above the other. Observe that ba-

8



sically all algorithms of interest keep W constrained to a lower dimensional

subspace VV of the space of all p x p matrices. Hence, in a nonredundant

parametrization 9 <-»• {A, W), 6 contains the entries of A and the coordinates

of W with respect to a suitable basis of W. In the sequel, we shall find it no-

tationally convenient to continue the analysis in terms of A and W , keeping in

mind that W £ VV.

For sake of simplicity, let the learning rates be the same for both the A and

the W part of the algorithm. The updating equations are

A/lr, = yniynX'n-'^{yny'n)An-l), (15)

AWr, = InCliyuV'n), (16)

where the sequence {j/n} is generated by yo = and

yn ^ PiWn-l)yn-l + Q{Wn-l)An-iXn, (17)

such that

ynie) = P{W)yn_i{e) + Q{W]Axr,

ri-l

= ^P(WyQ{W)AXn.^.
i =

For what follows, we assume that

[A 1] {xn} is a sequence of independent, bounded random vectors with mean

zero and the same covariance matrix E.

[A 2] {'in} IS a sequence of positive numbers satisfying

^7n=oo, ^7;<oo.
n n

Using [A 1], we have

Eyn{9)x'n ^Q{W)AE

independently of n, and the covariance matrix of yn{d) is given by

n-l

Eyn(e)yn{9y = ^ P(WyQ{W)AEA'Q(Wyp{wy\
1 =



Hence, in order to guarantee that the limiting covariance matrix of yni9) exists,

we need all eigenvalues of P{W) to be less than one in absolute value, in which

case

oo

lim Eyn{9)yn(0y ^Y P{WyQiW)AEA'Q{WYP{W)" =: R(A,W)
n—'OO ^—

'

1 =

and, by combining (14) with (15) and (16) and the above computations, we

obtain the asymptotic ODE

A = QiW)AE - ^(R) A (18)

W = QiR) (19)

with R = R(A, W).

As P{0) = O by assumption, the above eigenvalue condition is automatically

satisfied if Q sets at least all on- and superdiagonal entries to zero such that

W remains "at most" subdiagonal throughout the algorithm. In this case, we

necessarily have P{Wy = O for z > p such that R(A, W) is the sum of only

finitely many terms. The following key result will be proved in the appendix.

Theorem 1. Let {An] and {Wn] be generated by (15) and (16), respectively,

and lei A"(-) and W^i) be the left shifts of the corresponding interpolated pro-

cesses.

Assume that W contains only subdiagonal matrices and that with probability one,

the sequence {An,Wn} is bounded. Then, with probability one, iA'^{-),W"{-)}

IS bounded and equicontinuous on bounded intervals. If (A(), W{-)) is the limit

of a convergent subsequence, it satisfies the ODE

A = Q(W)Ai:-^R)A

W = Q{R).

with R = RiA, W) and W eW.

Let 0* be the set of all locally asymptotically stable equilibria {A, W) of the

above ODE and 'D(Q') its domain of attraction. If (An,Wn) enters a compact

subset S ofD{Q') infinitely often with probability one, then {An,Wn) -^ Q*

with probability one.

As already explained in section 3, boundedness of {An, Wn] can always be

ensured upon combination of the algorithm with a suitable projection mech-

anism which confines the updates to a bounded subset of the network weight

10



space. If the updates are constrained to some hypercube by a simple trunca-

tion device, the asymptotic paths satisfy the above ODE in the interior of that

hypercube.

In the case where W is not constrained to subdiagonality, it has to be guar-

anteed that \Vn eventually remains in the stability region which consists of all

W G H' for which all eigenvalues of P(W) are less than one in absolute value

(i.e., the region where R{A, W) is actually defined). Again, this can be ensured

using simple truncation mechanisms. As an example, if P{W) = W'' for some

^- > 1 as is the case in real-time applications based on Foldiak's architecture,

then it is easily seen that it suffices to keep \ujij\ < p~^ for all off-diagonal entries

uiij of W. To avoid unnecessary technicalities, we shall not formulate an explicit

theorem and continue to refer to (18) and (19) as "the asymptotic ODE", al-

though in general it will only be defined for H^ in a suitable neighborhood of (9;

for more details, see Kushner k Clark (1978, p. 40 and section 5.3).

We now turn over to the investigation of the equilibria of the asymptotic

ODE and their local stability properties. For this purpose, we shall for sake of

simplicity make the additional assumption that

[A3] .4// eigenvalues of D are distinct and positive.

Let us write A, for the j'-th largest eigenvalue of S and u; for an associated unit

length eigenvector which is then unique up to a change of sign. In what follows,

it will also be convenient to let (t resp. r denote the coefficient of W in P{W)
resp. Q{W) such that

P{W) = aW + ---, QiW) = I + rW +

where the dots indicate terms containing higher powers of W

.

The equations for an equilibrium point of the ODE (18) and (19) are

QiW)Ai:^^(R)A, n(R) = 0, R=R(A,W). (20)

Of course, an explicit solution of these equations is impossible without being

more specific about the particular choice of $ and Q. Assume in addition that

QiW) has full rank p; in fact, this is the case for all relevant W in all applications

of our interest. We then have the following general result.

Theorem 2. Let A and W solve (20) such that Q{W) has full rank p. Let

r := rank(,4). Then there exist a p x r matrix C of full rank r and a sequence

of mutually distinct indices I < i^, . . . ,ir < d such that

A = C[ui„...,u,^]'. (21)

11



For the proof of theorem 2, see the appendix. Geometrically speaking, equa-

tion (21) says that span(.4'), the subspace of IR spanned by the rows of A,

equals span{ii,i , . . . , u,^}.

Of course, as we are interested in algorithms which extract the first p prin-

cipal components, we expect any "reasonably good" algorithm to exhibit the

following behavior. The set of asymptotically stable equilibria should not be

empty, and all asymptotically stable equilibria should have rank(.4) = p and

{ii, , ip] = {l,...,p}; all other equilibria, corresponding to ^'s which ex-

tract some "wrong" (or not enough) principal components, should be unstable.

In addition to that, W should at least be subdiagonal to allow the mature net-

work for finite-time exact computation of its output to a previously unseen input

pattern. Hence in particular, if W is kept symmetric throughout the algorithm,

all asymptotically stable equilibria should have W = O.

As will be shown in the appendix, equilibria with rank(i?(.4, W)) < p are

always unstable; hence, in the following discussion, we may restrict our attention

to equilibria with full rank R.

For the local PCA algorithms which are the main concern of this paper,

we have $ = diag and fi = — offdiag or Q = —subdiag; in the sequel, we

shall refer to these two variants as a local PCA algorithm "in symmetric mode"

respectively "in asymmetric mode". In either case, due to the fact that R{A, W)
is symmetric, the equations for an equilibrium are

Q{W)AE = dmg{R)A, ofrdiag(;?) = 0, R = R(A, \V). (22)

We have the following result.

Theorem 3. .4// solutions of (22) with W = O and full rank R are such that

the rows of A are mutually perpendicular unit length eigenvectors of H, with

associated (diagonal) eigenvalue matrix R = AT,A' . //r ^ 0. these are the only

equilibrium points with subdiagonal W and full rank R.

Remark. If r = 0, there may be critical points with subdiagonal, but nonzero W
and full rank R, see example 1 of the appendix. In the symmetric cases, a com-

plete description of the set of equilibrium points (even with full rank R) is very

hard. Example 2 of the appendix shows that each of the "desired" equilibria

may actually lie on a curve of equilibria.

The local stability properties of the local PCA algorithms are given in the

following two theorems. To simplify matters, let J = {{i,j) : 1 < j < ^ < p},

S = {{a,T) : (7 + r > 1, (T < 0},

12



and let

a,_,((T, t) = Xt -\- (cT + T - l)\j, 0i]{(T, t) - {(7 -\- r)A, - aXj.

Theorem 4. For the local PCA algorithms in asymmetric mode, equilibria with

\V — O are asymptotically stable if and only if

A = [±ui, . . .,±Uf,]'

and

aij{<r, r) > 0, /^,j(cr, r) > for all {ij) G J.

This condition is satisfied for arbitrary \i > > \p > if and only if (a, r) G

S. If for some i, the i-th row of A does not equal ±u, , or if aij{a,T) < or

0ij{a, r) < for some {i,j) € J , the equilibrium is unstable. This is always the

case if cr + T < 0.

Corollary. If{a,T) G S, the asymptotically stable equilibria of the local PCA
algorithms in asymmetric mode are exactly

A = [±ui ±up]', W = 0,

and all other equilibria are unstable.

For the algorithm of Rubner k Tavian (1990), PiW) = O and Q{W) ^ I + W,

hence {a, r) — (0, 1) G 5 and the conclusions of the corollary apply. Algorithms

based on the hierarchical modification of Foldiak's architecture which perform

k y-updating cycles use PiW) = W' and Q{W) = I + W ++ W''-K Thus,

if fc = 1, we have a — \ and r = and all equilibria are unstable because for

i > h
/?„(1,0) = A,-A, <0.

\{ k > 1, (a, t) = (0, 1) G S, and again, the conclusions of the corollary apply.

We infer that during the learning period, it is not necessary to perform exact

decorrelation before updating the network weights, thereby motivating the use

of "quicker" feedback algorithms with 1 < ifc < p.

Theorem 5. For a local PCA algorithm in symmetric mode, it is neces-

sary for an equilibrium with W = O to be asymptotically stable that A =

[±Un, . . . , ±u,,]' with {ii,. . .,ip} = {1, . . . ,p}, and a < 0. If a > 0, all equilib-

ria with W — O are unstable.

13



As real-time implementations of Foldiak's original algorithm use P{W) — W''

for some ^' > 1 and therefore have cr > 0, we conclude that for these algorithms,

none of the desired limit points is asymptotically stable. Similarly, as a =

if P{W) = O, we infer that no feedback-free local PCA algorithm gives rise to

asymptotically stable desired equililibria if run in symmetric mode.

Therefore, hierarchical decorrelation should always be preferred over more

competitive, symmetric decorrelation mechanisms, for reasons of superior per-

formance of the algorithms — in symmetric mode, the desired limit points are

not attractive enough. In fact, it is not too hard to give a biologically plau-

sible interpretation of these findings. In our cases, the local updating of the

.4 part of the network weights forces the rows of .4 to be eigenvectors of the

input covariance matrix S; in addition, if the network wants to extract as much

input information as possible, the rows must not be collinear and hence they

have to be mutually perpendicular. Thus, the local structure forces the units to

follow a very strict hierarchy (of output variance). On the other hand, if each

unit tries to maximize its output variance (subject to identical constraints) and

all units are allowed to compete equally, then it will take much longer for a

hierarchical structure to evolve than if this hierarchy is explicitly forced (or at

least strongly supported) by the network interconnection topology. Of course,

allowing for competition in order to obtain more "balanced" representations is

quite attractive; however, this balance should be structurally stable.

For the subspace algorithm (1), $ is the identity mapping and Q = such

that W = O. It is shown in Baldi & Hornik (1991) that all equilibria with full

rank R are of the form A = C[?i,i, . .
.

, u,,,]' where the ij are mutually distinct

and C is an arbitrary, orthogonal p x p matrix. Therefore, these equilibria are

not isolated and thus cannot be asymptotically stable. This deficiency of the

subspace algorithm was already noticed implicitly in Williams (1985). It can be

shown that the component of small perturbations about an equilibrium which

are perpendicular to span (.4') die out asymptotically if and only if {?i, . . . , ?p} =

{1, . . . ,p}; a proof of this fact, together with a discussion of the evolution of the

components along span(.4'), see Krogh Sz Hertz (1990).

For Sanger's GHA (2), $ = lower and Q = such that W = O. It is

easily seen by induction (cf. e.g. the proof ot theorem 3) that all equilibria

with full rank R are of the form A = [±Ui, , • •• , ±"ip]' with mutually distinct

I < ii, ,ip < d. The following result is implicitly contained in both Oja h
Karhunen (1985) and Sanger (1989).

14



Theorem 6. The asymptotically stable equilibria of Sanger's GHA (2) are

A = [±ui,...,±Up]';

all other equilibria are unstable.

5 Remarks and Problems

In Oja L Karhunen (1985), it is shown (lemma 5, p. 80) that if Oja's one-unit

algorithm is used with uniformly bounded inputs and the learning rates are

sufficiently small (but do not necessarily tend to 0), then the weight updates

automatically remain inside some bounded subset of the weight space. It is def-

initely worthwhile investigating whether or not multioutput generalizations also

possess this very strong stability property, in particular if local algorithms with

asymmetric decorrelation do so. If this were the case, explicit truncation would

become obsolete. However, this question appears to be extremely challenging.

If the ODE method is to be used for producing explicit convergence results

for on-line PCA learning algorithms, T>(0*), the domain of attraction of the set

of asymptotically stable equilibria, has to be identified (or at least, one should

succeed in exhibiting a suitably "rich" subset of X>(0* ) which the updates could

be confined to). However, as already indicated in section 3, the asymptotic

ODEs of multioutput algorithms are quite complicated, thereby making such

an identification very hard.

In fact, the only case where a complete global analysis of the ODE is available

appears to be Oja's one-unit algorithm (Oja k Karhunen, 1985). For the sub-

space algorithm, the analysis in both Williams (1985) and Krogh & Hertz (1990)

is strictly local, and it actually seems to still be unknown whether an equilibrium

of the form A = [±ui, . .
.

, :tup]' is stable or unstable (remember that it cannot

be asymptotically stable). Sanger (1989, p. 463) claims that for the GHA, "the

domain of attraction (of Q' = {A : A = [±ui, . . . , ±Up]']) includes all matrices

with bounded weights", which is obviously wrong due to the existence of un-

stable equilibria of the form A = [±Uij , . . . , ±u, ]' with (i'l , . .
.

, Zp) ^ ( 1, . . . , p).

Clearly, for local PCA algorithms the global asymptotic analysis is even harder.

However, exhaustive computer simulations confirm rapid convergence to 0' in

asymmetric mode even when starting with very large weights or initial configu-

rations very close to unstable equilibria.

Finally, let us mention that the asymptotic analysis for local PCA algo-

rithms which update A using hebbian learning with explicit rowwise euclidean

15



normalization rather than apply Oja's one-unit algorithm to each of the rows

of A is more or less identical to the analysis presented here, cf. e.g. the results

in Oja k Karhunen (1985).
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Appendix: Mathematical Proofs

Proof of theorem 1. Let 0, be the set of all = [vec(/i)', vec(VV')']', where

,4 is an arbitrary p x d matrix and W is a subdiagonal p x p matrix. We
proceed by applying theorem 2.5.2 of Kushner & Clark (1978) with the obvious

modification that as by assumption the algorithm keeps 9n in 0«, all conditions

have to be verified only for ^ in 65. (Alternatively, one could, at the expense

of more complicated notations, work with a nonredundant parametrization —
{A,W).)

In vectorized form, the algorithm is

?„ = 9r^-l + 7„ h{ZnJn-

where Zn = (Jn,yn),

h{z,6) =
vec{yx' -^(yy')A)

vec(Q(j/y'))

and the y^ are generated according to ( 17). We already know that for all 6 G Q,,

lim Eh{zn(9),e) =
veciQ{W)AE-<^(R)A)

vec{QiR))
:= h{e), (23)

where of course R = R{A, W).

Applied to our case, theorem 2.5.2 of Kushner L Clark (1978) states that if

conditions [A2.2.3], [A2.4.5], [A2.5.2] and [A2.5.3] of Kushner k Clark (1978)

are satisfied and {On] remains bounded with probability one, then {^"(O} is

bounded and equicontinuous on bounded intervals with probability one, and the

limits of convergent subsequences satisfy the ODE 9 — h{9). As we assumed the

boundedness condition, the proof of theorem 1 is completed upon verification

of the abovementioned conditions.

[A 2.2.3] is trivially satisfied. We start with [A 2.5.2].

A 2.5.2. There is a continuous function h{) such that for some T > 0. for each

e > and each 9 E Qs,

iim P< sup max
"-<» l;>r; t<T

where

^ '„{h{zd9),9))-h{9))

m{t) = max{n : („ < t).

> ( 0,
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If h{-) is defined by (23), it is clearly continuous for 6 G Q,. Fix ^ Q, and

T > 0, and let hn{0) = h{zn{d),d). Observe that for t < T,

i =m(jT)

for all j. For each e > 0, we can choose n sufficiently large such that for all

i > rn{jT) and j > n, |E h,{0) - h{e)\ < f/(2r). Hence for n sufficiently large,

sup max
j>n t<T

< sup max
j>n t<T

< sup max
J>n t<T

m(jT+ t)-l

x-m(jT)

m{jT + t)-l

J2 yiih,{e)-Eh,{e))

i = rn{jT)

m{jT+ t)-l

J2 l.(Eh,{9)-h{9))

i =mUT)

J2 'n {hdd) - E h,(9)) + e/2.

i = m{jT)

+ sup max
j>n t<T

Note that almost sure convergence of
Yl'i = ].

7' e^il^) ~ ^ ^i{^)) 's equivalent to

the condition that for each f > 0,

lim P< sup
"^°o [rn>n

which in turn implies that

J2-^Ah.{9)-Eh,{e)) <f/2 =1,

lim P^ sup max
j>n t<T

J^ j,{h,(9)-Eh,{e))

t-m{jT)

<e/2S = l.

Hence [A 2.5.2] is established if we show that Yl'i-i
')'' (^i(^)~E h,{9)) converges

with probability one, which can be done by showing that {jn(hn(d) — E h„{6))}

is a mixingale of size —1/2 (or larger) with square summable magnitude indices

and using the mixingale convergence theorem (McLeish, 1975, corollary 1.8).

As {xn} is bounded by assumption, {yn(^)} is clearly bounded as well. By

lemma 1 in Andrews (1989), vec(y„(^)xn) and vec(yn(0)y„(0)') are near epoch

dependent (NED, cf. Gallant h White, 1988) on {x„} of arbitrarily large size.
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It follows by lemma 3.14 of Gallant k White (1988) that {h„{0) - E/i„(^)}

is a bounded mixingale of arbitrarily large size and with bounded magnitude

indices {(:„}. Hence, {yn(h,i{d) - E hn{9))} is also a bounded mixingale of ar-

bitrarily large size and magnitude indices {fnCn} which is square summable by

assumption [A 2] and boundedness of {cn}. Therefore, the mixingale conver-

gence theorem applies, and [A 2.5.2] is established.

If a sequence {y„} is generated by !/„ — Pn-iyn-i + Cn, we find upon resub-

stitution that for all k,

k-l

Vn = Ln-\,kyn-k + ^ -^n- 1 ,iCn-i,

1 =

where Ln-i,o = I and for ; > 1, Ln-i^k = Pn-i Pn-k- In particular, if all Pn

are subdiagonal p y. p matrices, L^ t — O for all k > p, and

p-i

t =

l.iCn- (24)

Now let P„ = PiWr,), c„ = Q(Wn-i)An-ix^ with ^„ = [vec(,4„)',vec(PF„)']'

a bounded sequence in 0,. Using the above formula, it is readily seen that for

all f > we can find S > such that if {9n} is another sequence in 0^ satis-

fying maXm-it<n<m+( |^n -^r>
I
< 6 and yn is generated by y„ = P{Wn-i)yn-i +

Q(\Vn-].)An-iXn, then max,n<r,<m+/ \yn—yn\ < f, which in turn implies [A 2.5.3].

Let ® denote the Kronecker product of two matrices (see e.g. Magnus &
Neudecker, 1988) such that vec{LMN) = [N' ® L)vec(M) for all matrices L,

M, N of compatible dimensions. Then vec($(j/i/),4) = (A' /) vec(<I>(yy')),

and thus

\h(z, e)\ < \A' ® /| |vec(^(yyO)| + |vec(yx^)| + |
vec(Q(yyO)|

93( 94iz)

Clearly, yi() is bounded on bounded subsets of 0j. For M > 0, let S\f be the

event that for some / G {3,4} and some n, y;(-n) > M As by assumption {9,^}

and {jn} are bounded with probability one, (24) shows that {yn} and hence

also {gii^n)} remain bounded with probability one; hence limA/_co P (^A/) = 0.

On the complement oi S\f,

sup max

m(;T+ ()-l

^ 7.3/(m)

t = m{jT}

m(jT+ t)-l

< M sup max Y_^ 7i £ MA.
t =m(jT)
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Let e > be arbitrary. As soon as A < t/M

,

P \ sup max

m{jT + t)-].

^ 7.3/(-.)

i =m{]T)

>f > <p(<^u:

Now let M —* oci to conclude that for all e > and / G {3,4},

lim P< sup max

m(jr+()-l

.=m(;r)

> t

establishing [A 2.4.5] and thereby completing the proof of theorem 1.

Proof of theorem 2. Letting M = Q{W)-^^{R), the first equation of (20)

becomes .4S = MA. Hence,

M Aui = A'Eu, = A, Aui. ? = 1 d,

from which we conclude that Au, is either zero or an eigenvector of M with

eigenvalue A,. As by [A3] all A, are distinct, the nonzero Au, are linearly inde-

pendent by a well-known result from linear algebra; on the other hand, the num-

ber of linearly independent (and thus nonzero) Aui equals rank(A [ui, . . . , u^]) =

rank(.4) = r. Now let Uo = ["i,, • • , "iJ-D where £) is a suitable diagonal ma-

trix with entries ±1 and ?i, . . . , zV is some permutation of the indices in Jq =

{i : Auj / 0); similarly, let j'l, . . . ,jd-r be the indices in I± = {i : Aui = 0} ar-

ranged in ascending order and [^j. = [uj^, . . ,Uj^_^]. Then clearly C := AUoD
has full rank r, AUi_ = O, such that finally, as u, and Uj are perpendicular

for i ^ J and thus / = UoU{> + U^Ul, A = A{UoU(> + U±Ul) = AUqUI) =

C[ui,, . . .,u,J'.

Proof of theorem 3. If \V = O, the equations for a critical point give

AE = diag{R)A, off"diag(7?) = 0, R = .4E.4'.

If R is full rank, so is ,4. It follows that the rows of .4 are eigenvectors of S with

corresponding eigenvalue matrix R, and that

.4E = diag(.4E.4')A = .4S.4'.4.

Multiplying by A' from the right we finally conclude that .4,4' = /, whence the

first assertion of the theorem.
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The proof of the second assertion is more involved. Let e, denote the j-th

Cartesian unit vector, and let ai = ej.4 be the i-th row of .4 so that A' —

[oi, . . .,ap]. The equations for a critical point are ofFdiag(/?) =: O and, taking

transposes for notational convenience.

EA'Q(Wy = A'diagiR). (25)

Observe that R is a. nonnegative definite diagonal matrix which is full rank by

assumption. Hence, all its diagonal entries p, = e'iRei are strictly positive. If

W is subdiagonal, we can write W as

"0 W2,l i^3,l

U)3 2

w =

tjp,p_i

Trivially W'e\ — 0, and thus Q[W)' P{W)'"^e\ equals ex for m =; and zero for

m > 0. Hence,

pi = e[Rex = e[AT.A'ex = a[^ax

and

pioi = .4'diag(/?)ei = i:A'Q{W)'ex = EA'd = Eai

As pi > 0, we conclude that ai is a unit length eigenvector of S with corre-

sponding eigenvalue pi.

We now proceed by induction. Suppose we have already shown that for

all i < /, Wci = and that the Oi are mutually perpendicular unit length

eigenvectors of S with corresponding eigenvalues p, . Then, if i < /, we have

Q{Wye, = e. and P(W)"^e, = for m > 0; if both ij < I,

/.v^. _ Pi' « = ;

0, i f J.

Observing that

we obtain

Wei = ^l,iei + h w,,/_ie/_i,

W'-e, = W'{uii_iei + htj;,,_ie;_i) = uniW'ei + \- ^ij-iWei^i

and thus also W"^et -0,m>2. In particular, Q{Wyei - [I + rlF')e,.
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Now let i < I. As R is diagonal,

= e;/?e, =elA^A'Q{Wye, = a[EA'(I + TVV')e! = ajSa, + rp,a;,,,.

On the other hand, multiplication of equation (25) by a', from the left and by

6/ from the right gives

a'.llai + Tp^uii = pi a[ai.

Combining both equations and using that pi is positive by assumption, we con-

clude that for all i < /, a',ai = 0. Thus, rpju;/ , = — aJSa/ = —rpiaUit — 0,

whence w; j = because both r and p, are nonzero. Summing up, Wei —

and a; is perpendicular to all a, with i < I.

This finally gives

pi — e'lRet — a'iT,ai

and

p,a, = A'd\8ig(R)ei = S^'Q(iy)'e, = S^'e, = Sa,,

hence at is a unit length eigenvector of S with corresponding eigenvalue pi,

completing the induction step.

Example 1. As an example for the possible existence of equilibria with full

rank R and subdiagonal, but nonzero [V in the case where r = 0, consider

P(W) = W, Q{W) = I, and p = 2. (The example may trivially be extended to

larger values of p.) Let us write w = u^y for the only nonzero entry of W , let u be

a unit length eigenvector of S with associated eigenvalue A, and let A — [u, 0]'. It

is easily seen that for all w, we have AT, — RA, where R — R{A, W) is diagonal

with entries A and u'-A. Hence, whenever u; ^i^ 0, {A, W) is an equilibrium

with subdiagonal, nonzero W and full rank R. This example also shows that if

r = 0, there may be equilibria with subdiagonal, nonzero W , full rank /?, and

rank deficient .4.

Example 2. We now show that equilibria with W — O can actually lie on

a whole curve resp. surface of equilibria with symmetric W. Let P{W) = W,

Q{W) = I, and again for sake of notational simplicity let p = 2 (the example

also works for p > 2). Consider an equilibrium with W = O and .4 = [u, i']',

where u and v are mutually perpendicular eigenvectors of E with corresponding

eigenvalues A and p.. Whenever u)~ < min(A//i, /x/A), we can find a = a(<*')i

(3 — 0{ijlj) satisfying

2 1 2 ^ ,32 1 2a=l— u;—
,

/y=l— u;

A' /^
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such that

a-X + ^S-^i = (l-u;-)(A + /x),

a-A-/?V = (l+^')(A-/i).

Now let

u;

u

72

1

1

/IP) = [a(w)u,/?(u;)t;]', H^(u;) =

Then clearly A{uj)i: = diag(A, /i).4(w), and, as W{uj) = V'D(w)\/', where

D{u)) = diag(u;, —ui),

we have

R{A(u;)^V{u;))

oo

a(u;)'A

1 =
oo

1 =

1
"^

iSiuffi
vD{ujyv'

1

1 =

V

Diuyv

A

{a(u>fX + f3{u)-^)/{l - Lo'-) (a(c^)2A - /?(cj)V)/(l + ^

X + fi X — 1^1

v

X — pL A + /i

v

/ij

Hence, whenever u;' < min(A//i, /x/A), A{u) and Vy(u;) satisfy (22). As 'u> varies,

we obtain a curve of distinct equilibria, which for u; = contains the desired

equilibrium A, W

.

Stability analysis of the equilibria. For the remaining proofs of theorems 4

to 6, it will be convenient to start the analysis of the local stability properties

of the equilibria at a general level which in fact pertains to all PCA algorithms

considered in this paper. We shall continue to use the notations introduced in

the proof of theorem 2; in addition to that, let Co = AUq and let Aq and Aj.

denote the diagonal matrices with entries Ajj , . .
.

, Aj^ respectively Aj, , . . . , Xj^_^

such that HUq = UqA-o and HUx = U±A±.
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To investigate the local stability properties of an equilibrium, we have to

consider the evolution of small perturbations about the equilibrium. Let E and

H be the perturbations of .4 and W, respectively. After linearization we obtain

E = Q(W)E'E: + dQ(H\W)A'L-^{R)E -^dR(E,H;A,W))A (26)

H = Q{dR{E,H\A,W)), (27)

with the additional constraint H G VV; here, dQ{H; W) etc. denote Frechet

differentials, i.e.

Q{\V + eH) = Q{\V) + € dQ{H; W) + 0(r) as e — 0.

Now notice that dR depends on E only via EILA' = EY^UqCq = EUoh-oCo

and its transpose; hence, dR.(E, H\ A, W) is of the form T(EUo, H; A, W). Let

Eo = EUo and E^ = EU± . As A'^Ux = AU^A^ = O, (26) and (27) are

equivalent to

E± = Q(\V)ExAi-^(R)Ex, (28)

£"0 = Q{W)EoAo + dQ{H-W)CoAo

-^{R)Eo-<^{T{Eo,H;A,W))Co, (29)

H = Q(T{Eo,H-A,\V)). (30)

Equations (28) resp. (29) describe the evolution of perturbations of .4 perpen-

dicular to resp. along span(/l'), expressed in terms of the bases given by the

columns of [(l resp. Uq- Obviously, equation (28) does not depend upon £"0 and

//, whereas (29) and (30) are independent from E^.

Writing v± — vec(£'j_), (28) becomes

v± = (A±®Q{W)-I®^R))vx

and we immediately deduce the following result.

Lemma. Let A, W be an equilibrium of the asymptotic ODE. Then small

perturbations of A perpendicular to span(.4') die out asymptotically if and only

if all eigenvalues of the matrix

K{A, W) = Ax®Q{W)-I® diag(/2)

have negative real parts.

Hence, an equilibrium A, W can only be asymptotically stable if the above

condition is satisfied; in particular, R has to be full rank. If one of the eigenvalues

of K{A, W) has positive real part, the equilibrium is unstable.
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In all subsequent proofs, equilibria with W = O are of interest. In these

cases, as R{CoU(i,0) = CoAoa, dQ(H,0) = tH and

dRiE, H-CULO) = {a + t)HR + EqAoC^ + CqAqE^ + ((t + t)RH',

(29) and (30) become

Eo = EoAo + r HCqAq - HR)Eo

-^{{a + t)HR+ EoAoa + CqAq^o + (<t + r)RH')Co (31

)

H = Q{{a + T)HR+EoAoC^+CoAoEl>+ia + r)RH') (32)

with H G VV.

Proof of theorems 4/5. If R is not full rank, the above lemma yields that

the equilibrium is unstable. Hence, suppose that R is full rank. Using the first

assertion of theorem 3, we infer that we may take Uo = A such that Ao = R
and Co = /. As the eigenvalues of K{Uo,0) = Aj_ ® / — / Ao are \j — A,

with {i,j) G Jo X 2"J., the lemma implies that the equilibrium can only be

asymptotically stable if Jo = {I, . . . ,p}, and is unstable otherwise.

As R = Ao is diagonal and H has zero diagonal, we find that diag(///?) =

di&g{RH') = O such that (31) and (32) simplify to

^0 = EoR + tHR- REo-2diag{EQ)R. (33)

H = n{ia + T)HR-\- EoR+ RE^ + (<r + T)RH'), (34)

where of course Q = —offdiag in symmetric mode and Q = —subdiag in asym-

metric mode. The proof can now easily be completed by noticing that (33) and

(34) can be decomposed into independent, one- resp. three-dimensional sub-

problems. In fact, let ^,j and j],j be the (?, j)-th component of Eq resp. H . and

denote the z-th diagonal entry of R by p,. For i = j, we have r;,, = and

^11 = -2/9,6i>

which tends to zero exponentially fast.

Now let i > j. In symmetric mode, we have rjij = r/^, and we obtain the

systems

where

6j 1 fP; - Pi rpj

'/.; . K'ji(^>^)= -Pj -(<^ + -r)(p. +P;) -Pt

.^j. J L rpi p, - pj
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pj - pi ^pj

-Pi -((^ + ^)(P. +P;) -Pi

Pi - Pi

It is straightforwardly computed that

det(M/_,(<T, r)) = a{p, - Pjf(pi + Pj).

As the degree of the characteristic polynomial 4>'j(\) = det{M'j{cr, t) — X I) is

3, its roots, being the eigenvalues of M'Acr, r), are either all real, or one is real

and two are complex conjugate. Hence, if, as has to be the case for asymptotic

stability, all eigenvalues have negative real parts, the determinant has to be

negative, which is only possible if a < 0. On the other hand, if (t > 0, then the

determinant is positive, hence at least one of the eigenvalues has positive real

part and the equilibrium is unstable, thereby completing the proof of theorem 5.

In asymmetric mode, we have r/j, = (remember that i > j) and we obtain

the systems

. ^i; = M°((T,r)i',_,-,

where now

M,^((7,r)

Hence, one eigenvalue of M^Aa^r) is pi — pj , from which we conclude that

the equilibrium can only be asymptotically stable if the p, are arranged in

descending magnitude, which together with the condition Iq — {l,...,p} we

already established implies that p\ — \\, . .
.

, pp = \p and .4 = [±ui , . . . , ±Up]',

and that otherwise it is unstable. In the case where p\ = Aj, . . . ,pp = Ap, the

remaining eigenvalues are the roots of the equations

A' + (A, - A; +{a + t)X^ ) a + (^ + r)A^(A, - A^- ) + rA; = 0.^ ' ^ V '

= a,;(<T, r) =Xjf3,j(a,T)

It is easily seen that both roots of the quadratic polynomial A- + qA + /? have

negative real parts if and only if both a > and /? > 0, and that at least one

root has positive real part if a < or /? < 0. Applied to our case, we thus

have asymptotic stability if and only if for all (i,j) £ J we have aij(a, r) >

and l3ij{cr, t) > 0, and conversely, if for some {i,j) ^ J we have Q,j(cr, r) <

or f3ij{(T,T) < 0, the equilibrium is unstable. In particular, this is the case if

<T -(- r < 0, because then Pij((T, r) < Xi — Xj < 0.

Finally, it is clear that the inequalities

A, + (cr + r - l)Xj > 0, (a + r)Ai - <tA_, >
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can be valid for arbitrary Ai > • • > Ap > and ii,j) G J if and only if

a + T > I and o" < 0, i.e. if and only if (cr, r) G 5, and the proof of theorem 4 is

complete.

Proof of the corollary. If W is subdiagonal, QiW) is lower diagonal with

diag(Q(l^V')) = / and hence full rank. By our lemma, all equilibria with rank

deficient R are unstable. Now observe that {a, r) G «S implies in particular that

r > 1, hence by theorem 3 all equilibria with full rank R are of the form .4 —

[±u,,, . . . , ±u,p]' and W = O. By theorem 4, these equilibria are asymptotically

stable if and only if zj = l,...,ip = p, and unstable otherwise, whence the

corollary.

Proof of theorem 6. For Sanger's GHA, W = and hence Q{W) = I. Again

using the lemma, all equilibria with rank(i?) < p are unstable. The equilibria

with full rank R can be shown to be .4 = [iui, , •• • , i"«p]' such that again we

may take Uo = A, Aq = R, and Co = /, and by applying the lemma once more

it follows that the equilibrium is unstable if Jo ^ {1, • . .,p} Trivially H = O,

and (31) becomes

Eo = EoR- REo - loweriEoR + RE(,)

which now decomposes into one- and two-dimensional subsystems. For i = j,

we have

which tends to zero exponentially fast, and for i > j we obtain

6; -pi -pi

Pi - pj J

and we immediately deduce that the equilibrium is asymptotically stable if and

only if ?i = I, . . . ,ip = p, and otherwise unstable.
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